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The necessary and sufficient conditions for optimal operation of energy and mass converters are examined,
and their relations with the internal parameters—static and dynamic conductivity—are established.

The nature of numerous technological processes is determined by the laws of mass and energy transfer [1, 2].

The physical plant (apparatus) in which mass and energy transfer is accomplished, is called a converter. The lim-
itations imposed on a given converter are determined by its finite volume, physical properties, and operating conditions.
Many quite complex technological plants and processes may be represented as a certain system of energy and mass con-
verters.

Mass and energy transfer occur as a result of the motion of various kinds of carriers interacting within the converter.
The ratio of transfer flux to the gradient of forces along the transfer path is called the conductivity of the transfer path.
It is convenient to distinguish between the conductivity g; relating to supply of energy and the conductivity g, relating
to supply of mass. The static conductivity g = I/X is the ratio of the average values of the transfer flux I and the gra-
dient X; the dynamic conductivity g’ = dI/dX gives the increase in transfer flux with change in the gradient along the
conducting path, i.e., it determines the rate of change of transfer flux. The conductivity and resistance characterize
the properties of the transfer path, i.e., the internal properties of the converter. On the other hand, the conductivity
may be determined from the external fluxes and forces, i.e., outside the volume of the converter. These properties
of the conductivity allow it to be used as the principal parameter characterizing the operating conditions of the con-
verter. The static and dynamic conductivities may be most simply measured at the energy input side of electrical con-
verters.

In any transfer process motion of the carriers results in irreversible heat flow and hence converter losses. It is
therefore expedient in solving this problem to invoke the theory and methods of the thermodynamics of irreversible pro-
cesses [3]. Use of the Le Chatelier principle [4] allows an evaluation of the state of the system under the action of all
disturbing forces, in terms of change of the internal parameters of the converter-conductivities and their functions. In
analyzing the converter regimes we examine unsteady conditions at small deviations from the equilibrium state, for
which a linear phenomenological law and the Onsager reciprocity relations are valid [3]. Entropy is chosen as the initial
variable most fully describing the converter conditions. The statistical content of the concept of "entropy” [4] allows us
to connect the phenomenological relations obtained with the statistical probability characteristics of the system.

The optimal regime of the converter is the region of conditions, consistent with the imposed constraints, under
which the process proceeds at greatest intensity with minimum losses. The maximum intepsity is measured by the value
of the useful flux of mass and energy, and the losses by the irreversible heat flows generated in any converter. The con-
ditions maximizing the useful flux and minimizing the irreversible heat flow, while allowing for the imposed constraints,
are the criteria of the optimal converter regime. '

Since the production of entropy is associated with dissipation of energy, i.e., irreversible heat flow, the state of
minimum production of entropy corresponds to minimum converter losses. Prigogine [3]has shown that entropy produc-
tion, which determines the outward entropy flux in any irreversible process, is a minimum in the stationary state. Hence
we must seek optimal converter regimes in the region of stationary states. Realization of stationary stability is a nec-
essary (but not sufficient) condition for the optimal regime. The optimal regime is one of a number of stable stationary
states of the converter (or a combination of such states). A necessary condition for the optimal regime is minimum rate
of entropy production inside the converter, which, in accordance with the extremal thermodynamic principle of [3],
determines the stable stationary regime and minimum generalized converter losses.

In the optimal converter regime the absolute magitude of the sum of the products of all fluxes and forces intro-
duced from outside is a minimum. :

Let us prove this. In the stationary state—a necessary condition for the optimal regime—all the internal param-
eters of the converter are independent of time. This also-holds true for the entropy:
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For the irreversible processes under consideration d; S/dt is always greater than zero [3]. Since in the optimal
regime d;S/dt = min, we have
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In accordance with the Onsager theory [3], the production of entropy ¢ = d;S/dt is expressed by a linear phenom-
enological law —by the sum of the products of all the interacting fluxes and forces ¢ = TIjXj . Similarly, the rate of
change of external entropy flux d¢5/dt, modified by the external fluxes of energy and mass (2), may be expressed by
the sum of the products of the external fluxes and forces.

In fact,
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where Iy, I characterize the rates of the transfer processes [2, 3]. The thermodynamic motive force (TMF) of the
energy flux X, is the corresponding potential gradient; for an electrical energy input this is the electric potential gra-
dient X; = Ag; the TMF for mass transfer is the chemical potential gradient X, = —TAU/T.

Using (2), we have

o= J—l (XiJ; = Xoly) | = min, (3
T |

which proves the initial proposition.

It follows that the necessary condition for the optimal converter regime may be determined from the combination
of external forces and fluxes, i.e., outside the given volume. This means that information on the optimal regime of
a converter may be obtained without it being necessary to penetrate inside it, however complicated the internal pro-
cesses may be.

The reduction of the quality of energy introduced from outside is also characterized by AS;; this corresponds to
Brillouin's negentropy ANj [5]. Negentropy is produced in the plant; in accordance with the Brillouin negentropy prin-
ciple [5], this is possible at the expense of conversion of information into negentropy; this information is supplied by
external influences. Then the above relations also determine the quantity of information (in Shannon's sense) necessary
to control the plant.

We shall now show that the input and output values and the converter parameters in the stationary regime (and for
small deviations from it) may be expressed as functions of the static and dynamic conductivities along the energy chan-
nel.

We determine conditions of minimum entropy production [3]. Since o is essentially a positive quadratic expression,
the conditions for minimal o coincide with its extreme value. This corresponds to
0 0 0 0
29 0, 22 20, 22 =0, 2% 0. (22)
90X, ol, 0X, ol,

Introducing the notation

[1 g_l’ﬁ.i =X! 12 :g.)’ a[l :gl’y aX:_y:x,’ a]r_) :gé (33)

X, X X, °¥oax, 0X, 90X,

and making the substitution
o g, O X O & "
0X, ol g1 0X, x

“In general, we shall take as I3, X3, Iz, X3 any combination of external fluxes and forces, including those
grouped into energy and mass fluxes. It is important that the forces and fluxes in question are intorduced into a given
volume: I;X;= ZIqu, I,X, = ZIka .
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after substituting (3a) and (4) into (2a), we obtain

g+ g1+ xx'gs+ xx'gy = 0% ()
Adding to (5) the Onsager relations [3]
Iy = XiLyy + XoLo, (6)
Loy = Lyg, @)
Iy = XsLyy + Xy Las, ' (3

and taking account of (3) and (4), we obtain

LX, =1,X,— g20X§ + gloX?, (9
g1— g1 = X" (g2 — &zo) (10
where
I ‘ [ 1, N
L= (—X—ll) 220: 8195 Loa = (XZ ) Xl--:0: 820+ (11

The quantities gjg and ga may be determined experimentally and correspond to the initial conditions. Differen-
tiating (9), we obtain

g1+ g1 — XX' gy — XX gy — 28peX X — 2819 = 0. (12)

Solving (5) and (12) simultaneously, we obtain
xx' = g — (g1 + g;)]/gzo, (13)
XX = g10/[820 — (G2 + G2o)]- _ (14)

If we supplement (13) and (14) with one of the Onsager relations, either (6) or (8), from (6) and (7) we get

!

i — g;—gm , (15)
X g1 &

and from (7) and (8)
X 8—8n (16)
X 82 — 820

Equations (15) and (16) determine the relative increments of thermodynamic forces following deviations. Solving simul-
taneously (13) and (15), and (14) and (15), respectively, we determine the absolute values of the TMF relations and
their deviations:

X =+ [ (‘”'{T‘g;*)(}“gb J%, (17)
N g0 (1 —g1)
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where
g1 . g; * 820
& 10 & 816 £ &1

Since equations (3a) are identical, we may use one of them. Similarly, x and x” are expressed as functions of g,, g5.
Simultaneous solution of (17) and (18) and integration gives
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&1 (510 gl) gl a ( gl""gm + i }g } dt) (20)
7 7 7 . 518 1 u
(g — g (1o —g 1)(5{10’*8’1"‘*&!) - (80— &1 — &) (g1 — &) g Zu {cont*d)

i.e., from the value g;, g; and their derivatives with respect to time we can measure the forces at the converter input.
Similarly we determine the absolute values and the deviations of the force gradients at the converter output as functions
of gy, g{ and their derivatives or as functions of g2, g'z, gz, g'é. From (10) and (11) it is easy to determine g, and I, =
= g2X;. In converters involving physical and chemical conversions (chemical reactions), X, is the chemical affinity
[3) and goX, charactenzes the mass flux per unit time, i.e., the rate of physical and chemical conversion in the con-
verter volume; g4 and gl are functions of the internal properties of the plant, its physical state, geometrical dimensions,
and other variable factors which change with time.

In the stanonary regime —a necessary condition for the opt1onal regime—all the parameters of the converter, in-
cluding g; and gl, are independent of time, i.e., gl = 0 g1 0. Substitution of these values into (20), (18), (17), (15),
(16) shows that a necessary condition for the optimal regime is constancy of the static and dynamic conductivities along
the energy (or mass) channel. Hence it also follows that to ensure a stable stationary converter regime, it is necessary
and sufficient to keep constant the two quantities g1 and g'l, which can conveniently be controlied without introducing
information sources inside the converter.

Using the definition of the optimal regime, we shall give a quantitative estimate for it by introducing a criterion.
We supplement the necessary conditions with sufficient ones, i.e., from a number of stable stationary regimes we seek
the regime of maximum intensity. We introduce as criterion the quantity p = o/(|I13X,| + |I;X,|), which characterizes
the ratio of the total losses to the sum of the useful fluxes. The optimal regime is that for which p = min. Expressing P
in terms of the converter parameters g4, gl g10> 820, and using (10), (17), and (19), we obtain: p(gl—cl)/(Q g1- gl Y,
ie., p=(g1-gD/(2gn—gi—gh). or

p=(k, — Dk, -~ 1) = min, (21)
where
=(@ —igi— D =Agih g (21a)
The value for p may also be expressed in terms of y = I;X /15X 2
= (v + Dy —1). (22
7
2 p=fl1)
prite \
3 ) —1 z

Fig. 1. Relations p = f(ke, 7). The region of physically possible
values is shown by hatching.

From the simultaneocus solution of (21) and (22) we obtain ke = —y. This means that when y > 0ke < 0, and, con-
versely, when y < Oke > 0. The relations p = f(ke, ) are shown in Fig. 1. It may be seen that p is the smaller, the
smaller k,. Note that p is always greater than zero, since the generalized losses cannot be negative, while the sum of the
mass and energy fluxes introduced into a given volume is always positive. Therefore condition (21) acquires the form

ke = min 6[11 m]y [_11 '—'w]-
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From the expression for p for an assumed trace of o, the signs of I;X; and 1,X, must be opposite, i.e., y< 0.
Taking into account that p > 0, this narrows the region of possible values of ke : kg €[1, ©]; y 6[—1, —w=],

The region of allowable values of ke, ¥, and p is shown by hatching in Fig. 1, and corresponds to physically
realizable conditions in the converter. The condition for the optimal regime takes the form

k. =Agi/Ag, k,> 1. (23)
For variable initial conditions ke, = 8g;/8g; = min and for y = g1/ng2 =min, ye[—1, —].

Hence a sufficient condition for an optimal converter regime is minimization of the ratio of increments of its
dynamic and static conductivities. Then the necessary conditions must be met, i.e., the optimal regime is sought by
making quasi-static changes in the parameters, while keeping g; and g constant in each regime. Criterion (23) enables
the optimal regime to be determined during operation by a search method, using optimizing devices, or analytically,
using variatiopal methods. The boundary conditions describing the lower and upper limits of variation of the thermo-
dynamic forces are determined by the physically attainable values of X and X, for which the relation

U/ X)) — U/ X Dx=0 (1(1)2 (24)
12/ X5) — (1y/X5)x,=0 Xy

is satisfied; the latter follows from the initial equations (6)~(8). Formulation of the boundary conditions according to
(24), without loss of generality, allows one to determine the working range of X; and X; on the basis of measurements
of the external forces and fluxes alone. Constraints are imposed on X; and X, by the materials of which the appartus

is composed and by the processed materials. The external constraints: Xym = X; = Ximax, X = X3 = Xsmax and
the working temperature range 0, <0 < Onax establish the limits for Iy, g1s Lo, g2, g'l, g'z. The relations (23),
(17)~(20) and their corollaries also allow one to calculate the optimal regime of the converter. This is particularly sim-
ple for electrical converters (electrothermal processes, ore-smelting furnaces, electrolytic processes, etc.)..

The above approach, which allows for the close interdependence and superposition of various effects, may be
applied in practice to any technological process for purposes of mathematical description and the construction of a con-
trol model. The control parameters of the model are the corresponding energy and mass fluxes, and the source of infor-
mation—the static and dynamic conductiivities along one of the channels. This also allows one to use the model to
construct optimal control systems for technological processes.

An example of calculation of the optimal regime.; We shall calculate the optimal regime and choose the basic
parameters of the electrothermal process of smelting lead ore, using the experimental relation I = f{X;) (Fig. 2) and
initial conditions: gy = 1 ohm -« m! (when X, = 0) and gy = —0.5° 1071 kgz/sec2 *amp * volt - m® (when X; = 0).
The dimensions are: Il—amp/mz; X ;1 —volt/m; Iz—kg/m?‘ « sec—the specific

reaction rate (per unit volume); X,—joule/kg; g;= gi = gy —ohm tom ;

g2=82=8mn -~kgz/sec2 -a-b-m®; x—joule m/kg * volt = m « sec + amp/ L10°
kg, g;() = L —kgz/secz . .ztmp2 -m?. The numberical values of these
- &0 24
quantities given below are shown without repetition of their dimensions. ‘
Using Fig. 2 and (21a), we determine kg 1ip and find the point & 20
corresponding to the optimal regime; we have /
kemin = — Ve = 2.8; Xy, = 2.05-10% ;o = 0.39- 104, 6
Using (17) and substituting g; and g; corresponding to the point & 12 }
(Fig. 2), we calculate x, and then X;: xg = —4.4+ 10°, whence Xqoe = /
= —0.9 - 10°. Knowing X,, we choose the optimal composition of the start - a8
ing raw material from those products for which the relation I; = f(X) has 4
been plotted. Here Xzg = xgX 1¢ . ‘ 0'4 €
From the formula y = Ipz X /115X 1¢ we find I,¢ in terms of the N |
known quantities yg. I1g, X6, Xse: g = 0.314, Then the main specific g ! j
physical and chemical indices of the optimal process have been found. 7 9 2! 2 X1
Suppose we set ourselves a production target: Q = 1.15 kg/sec (100 Fig. 2. Experimental charac-
ton/day), and, using the foregoing results, find the optimal volume of the teristics I; = f(X ).

plant: Vg = Q/Izg; Vg = 3.7 m3.

We determine the power required by the process: Pg = I;gX;¢Ve; By = 2.96 - 10% kwatt.
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We determine the optimal geometry of the proposed plant: furnace height H; furnace area S; electrode diameter

. ) . i S
d. For this we use the following equations: a) SH=V; b -XL T = G; where G is the furnace conductivity determined
1

. 3md
as a function of the electrode depth h, from the formula G = Tr%}%,}—cl) for (h. /H); = 0.5 [7]; hence b) % = 3rd/In(4H/d).
The relation between the electrode diameter and the reduced furnace diameter D is determined on the basis of the known
current density in the electrode Ij¢ and in the furnace: 1,g/Ie = D%/a%, assuming I1e = 6 ¢ 10* for graphite electrodes.
We obtain the equation ¢) (D/d)é = 3.46; where ) = ]/4S/z,By simultaneous solution of a), b), and ¢) in the un-
knowns H, d, and S. we determine their optimal values:

He == 1923 m; d, =1 m; Sg==295 m?,

Assuming. for simplicity, that the furnace is single -phase, we find the optimal electrical parameters: current 1°
and voltage U:

5]
wd?

I =1, 1) =47 10° amp

o
The furnace phase voltage /. = p./l; U, == 63 volts. We also choose the fumace transformer.
Industrial ore -smelting furnaces have parameters very close to those obtained.

In an automatic process control system the point ¢ is determined by computers and an optimization system. In
this case perturbing forces deflect the course of the process.

NOTATION:

g1 g;—static and dynamic conductivities of the converter with respect to supply of energy; gz, g;—the same with
respect to supply of mass; X1, Xp—sums of the external thermodynamic forces determining, respectively, the flux of en-
ergy (11) and of mass (I3); Iq. Xq—individual energy fluxes and corresponding thermodynamic forces; Iy, Xi—individual
mass fluxes and corresponding forces; jg—total energy flux; Zukjk—total mass flux; uk—mass transfer potential; ¢p—elec-
trical potential; jy—mass flux; js-extemal entropy flux; deS/dt—rate of influx of entropy from outside; d;S/dt—rate of
growth of entropy AS; inside system as a result of irreversible processes; for a real process Td;S/dt expresses energy dis-
sipation per unit time; continuity of the process is ensured by compensation of losses by the influx of entropy from out-
side AS,; T—absolute temperature; x—coefficient representing ratio of total thermodynamic forces; g, gzo —initial
values of gy and g, tespectively, for Xz = 0, X1 = 0; p - specific generalized loss coefficient; ke —optimality criterion
expressed as ratio of increments of energy conductivities; y—specific coefficient of energy converter; Q—output; P—power;
S—area; H—height of furnace; V~volume; G~—total conductivity of furnace for electrode depth he: d—electrode diameter;
1;e —current density in electrode; D—reduced diameter of furnace; I', U~total furnace current and voltage: Iy., Xie»
Xsg, 1, Ug. etc.~—corresponding optimal values of the parameters.
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