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The necessary and sufficient conditions for optimal operation of energy and mass converters are examined, 
and their relations with the internal parameters-static and dynamic conductivity-are established. 

The nature of numerous technological processes is determined by the laws of mass and energy transfer [1, 2]. 

The physical plant (apparatus) in which mass and energy transfer is accomplished, is called a converter. The lim- 
itations imposed on a given converter are determined by its finite volume, physical properties, and operating conditions. 
Many quite complex technological plants and processes may be represented as a certain system of energy and mass con- 

verters. 

Mass and energy transfer occur as a result of the motion of various kinds of carriers interacting within the converter. 
The ratio of transfer flux to the gradient of forces along the transfer path is called the conductivity of the transfer path. 
It is convenient to distinguish between the conductivity g l relating to supply of energy and the conductivity g2 relating 
to supply of mass. The static conductivity g = I/X is the ratio of the average values of the transfer flux I and the gra- 
dient X; the dynamic conductivity g '  = dI/dX gives the increase in transfer flux with change in the gradient along the 
conducting path, i . e . ,  it determines the rate of change of transfer flux. The conductivity and resistance characterize 
the properties of the transfer path, i . e . ,  the internal properties of the converter. On the other hand, the conductivity 
may be determined from the external fluxes and forces, i . e . ,  outside the volume of the converter. These properties 
of the conductivity allow it to be used as the principal parameter characterizing the operating conditions of the con- 
verter. The static and dynamic conductivities may be most simply measured at the energy input side of electrical con- 

verters. 

In any transfer process motion of the carriers results in irreversible heat flow and hence converter losses. It is 
therefore expedient in solving this problem to invoke the theory and methods of the thermodynamics of irreversible pro- 
cesses [3]. Use of the Le Chatelier principle [4] allows an evaluation of the state of the system under the action of all 
disturbing forces, in terms of change of the internal parameters of the converter-conductivities and their functions. In 
analyzing the converter regimes we examine unsteady conditions at small deviations from the equilibrium state, for 
which a Iinear phenomenological law and the Onsager reciprocity relations are valid [3]. Entropy is chosen as the initial 
variable most fully describing the converter conditions. The statistical content of the concept of *entropy n [4] allows us 
to connect the phenomenological relations .obtained with the statistical probability characteristics of the system. 

The optimal regime of the converter is the region of conditions, consistent with the imposed constraints, under 
which the process proceeds at greatest intensity with minimum losses. The maximum intensity is measured by the value 
of the useful flux of mass and energy, and the losses by the irreversible heat flows generated in any converter. The con- 
ditions maximizing the useful flux and minimizing the irreversible heat flow, while allowing for the imposed constraints, 

are the criteria of the optimal converter regime. 

Since the production of entropy is associated with dissipation of energy, i . e . ,  irreversible heat flow, the state of 
minimum production of entropy corresponds to minimum converter losses. Prigogine [3] has shown that entropy produc- 
tion, which determines the outward entropy flux in any irreversible process, is a minimum in the stationary state. Hence 
we must seek optimal converter regimes in the region of stationary states. Realization of stationary stability is a nec- 
essary (but not sufficient) condition for the optimal regime. The optimal regime is one of a number of stable stationary 
states of the converter (or a combination of such states). A necessary condition for the optimal regime is minimum rate 
of entropy production inside the converter, which, in accordance with the extremal thermodynamic principle of [3], 
determines the stable stationary regime and min imum generalized converter losses. 

In the optimal converter regime the absolute magitude of the sum of the products of all fluxes and forces intro- 
duced from outside is a minimum. 

Let us prove this. In the stationary s ta te -a  necessary condition for the optimal regime-al l  the intemal param- 
eters of the converter are independent of time. This also holds true for the entropy: 

dS  _ des  + d#_S_S 

dt dt dt - 
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For the irreversible processes under consideration d i S/dr is always greater  than zero [3]. Since in the optima1 
regime diS/dt  = min, we have 

]d~S/~t] == min.  (1) 

According to [2], 

d,,S A Js : dis  1 
at - -  c l ~  is := ~ (Y J,,-- ~,&). (2) 

In accordance with the Onsager theory [3], the production of entropy o = d iS /& is expressed by a l inear phenom-  
enologica l  l a w - b y  the sum of the products of a l l  the interact ing fluxes and forces o = 2 I i X i .  Similar ly ,  the rate of 
change of external entropy flux deS/dr ,  modified by the external  fluxes of energy and mass (2), may  be expressed by 
the sum of the products of the external  fluxes and forces. 

In fact,  

dt dt (E Jk - -  Z Fk Jk) 

where I 1, I[ character ize  the rates of the transfer processes [2, 3]. The thermodynamic  motive force (TMF) of the 
energy flux X 1 is the corresponding potent ia l  gradient; for an e lec t r i ca l  energy input this is the e lec t r ic  potent ia l  gra-  
dient  X 1 = A~o ; the TMF for mass transfer is the chemica l  potent ia l  gradient  X a = - T A g / T .  

Using (2), we have 

1 ( X l / i '  XJo) : = m i l l ,  (3)  
U := - 7  -C- I 

which proves the in i t ia l  proposition. 

It follows that the necessary condition for the opt imal  converter regime may  be determined from the combinat ion 
of external  forces and fluxes, i . e . ,  outside the given volume.  This means that information on the op t imal  regime of 
a converter may  be obtained without it being necessary to penetrate  inside it, however compl ica ted  the in temai  pro-  
cesses may be. 

The reduction of  the quali ty of energy introduced from outside is also character ized by AS i ; this corresponds to 

Brillouin's negentropy AN i [5]. Negentropy is produced in the plant; in accordance with the Brillouin negentropy pr in-  
ciple [5], this is possible at the expense of conversion of information into negentropy; this information is supplied by 
external  influences.  Then the above relations also determine the quantity of information (in Shannon's sense) necessary 
to control the plant .  

We shall  now show that the input and output values and the converter parameters  in the stationary regime (and for 

small  deviat ions from it) may  be expressed as functions of the static and dynamic conductivi t ies  along the energy chan-  
nel .  

We determine conditions of min imum entropy production [3]. Since o is essent ial ly a posit ive quadratic expression, 
the conditions for min ima l  o coincide with its extreme value. This corresponds to 

Introducing the notation 

and making the substitution 

0 ~  0 o  Oo O~ 
- -  =-  0;  - -  0 ;  = 0 ;  = 0 .  
OX1 011 OX2 01.2 

(2a) 

11 X., L Oil , OXo Olo g~ (3a) 
= g l , ~ -  = x ,  - --g.2, - - g l ,  x', " -- 

X1 X2 ON 1 dX t  0~2 

v t 

0I.. . .  0z,  0z, 
o x ,  - g x' = g l  ' .,., , (4)  

*In general ,  we shall  take as I~, Xl ,  12, X2 any combinat ion of external  fluxes and forces, including those 
grouped into energy and mass fluxes. It is important  that the forces and fluxes in question are intordueed into a given 

volume: I1X 1 = 2IqXq ; IzX2 = EIkX k .  
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after substituting (3a) and (4) into (2a), we obtain 

gl + g~ + xx' gs + xx '  g2 = 0".  (~) 

Adding to (5) the Onsager relations [3] 

I1 = X 1 L n  + X2L21, (6) 
L21 = L12, (7) 

12 = X2 L22 + X1 Llo. , (8) 

and taking account of (3) and (4), we obtain 

where 

2 2 2 l lX i  ~ ' I 2 X 2 - -  g2o 2 + g loXl ,  

gl  - -  glo - x2 (g2 - -  g2o), 

(9) 

(10) 

(11) 

The quantities gl0 and gz0 may  be determined experimental ly and correspond to the initial conditions. Differen- 
tiating (9), we obtain 

_ _  X ~ ' gl -[- gl X g2 - -  xx'g2 .-- 2g2oxX'~ 2glo = 0. 

Solving (5) and (12) simultaneously, we obtain 

xx '  = [gl0 - -  (g~ + gl)] /g~o,  

xx'----- glo/[g~o - - ( g 2  + g2o)] �9 

If we supplement (13) and (14) with one of the Onsager relations, either (6) or (8), from (6) and (7) we get 

x' g l - - g i o  

x gl  - -  g~o 

(12) 

(13) 
(14) 

(15) 

and from (7) and (8) 

X' __ g 2 - - g 2 o  (16) 

x g~ - -  g~o 

Equations (15) and (16) determine the relative increments of thermodynamic forces following deviations. Solving simul-  
taneously (13) and (15), and (14) and (15), respectively, we determine the absolute values of the TMF relations and 
their deviations: 

where 

x ' = +  I 

(1-s163 ]" 
(1 - -  g~ - -  g]*) ( l~ - -  g, ) ~ 

g20 (1 - - g l )  

(17) 

, (18) 

g ~ = _ _ g , . ,  ,* e l  ," . g~o 
g~o gl  : - -  g~0 = -  (19) 

glo glo 

Since equations (3a) are identical, we may use one of them. Similarly, x and x '  are expressed as functions of g2, g t .  
Simultaneous solution of (17) and (18) and integration gives 

~2 

( I 1 +  X1 = C e x p  - - - ~ -  g l - - g t  

t t  

glo - - ;g l  ] ~'1 -*- 

(glo - -  g~ - -  gl) (gl - gl) 
(20) 
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(g o - g d  gl [ gl-g,o + 
+ -g )(g o-gb (g o + (g o-g -gl) (g,v-ei) 1 ~Slo dt , (cont 'd)  

g l g,o 

i . e . ,  from the value g l ,  g[  and their derivatives with respect to t ime we can measure the forces at the converter input. 
Similar ly  we determine the absolute values and the deviations of the force gradients at the converter output as functions 

of g l ,  g~ and their derivatives or as functions of gz, g'2, g2, g~. From (10) and (11) it is easy to determine g2 and I2 = 
= g2X2. In converters involving physical  and chemica l  conversions ( chemica l  reactions), X2 is the chemica l  affinity 
[3], and g2X2 character izes the mass flux per unit t ime,  i . e . ,  the rate of physical  and chemica l  conversion in the con-  
verter volume; g~ and g ~ are functions of the internal properties of the plant ,  its physical  state, geometr ica l  dimensions, 
and other variable factors which change with t ime .  

In the stationary r e g i m e - a  necessary condition for the optional  r e g i m e - a l l  the parameters  of  the converter,  in-  
cluding g l  and g I ,  are independent of t ime,  i . e . ,  g l  = 0; gt  = 0. Substitution of  these values into (20), (18), (17), (15), 
(i6) shows that a necessary condition for the opt imal  regime is constancy of the static and dynamic conductivi t ies  along 
the energy (or mass) channel .  Hence it also follows that to ensure a stable stationary converter regime,  it is necessary 
and sufficient to keep constant the two quantities g ~ and gz, which can convenient ly  be controlled without kntroducing 
information sources inside the converter.  

Using the definit ion of the op t imal  regime,  we shaI1 give a quanti tat ive est imate for it by introducing a cri terion.  
We supplement the necessary conditions with sufficient ones, i . e . ,  from a number of stable stationary regimes we seek 
the regime of max imum intensity.  We introduce as criterion the quanti ty p = c~/(lIzX ~[ + I IzX2 i), which character izes  
the ratio of the  total  losses to the sum of the useful fluxes. The op t imal  regime is that for which p = rain. Expressing p 
in terms of the converter parameters  g l ,  g'z, gl0, gzo, and using (10), (17), and (19), we obtain: p ( g ~ - g l ) / ( 2 - g ~ - g l  ), 
i . e . ,  p = ( g l - g ' , ) / ( 2 g l o - g l - g ' l ) ,  or 

p = (k~ - -  1)/(k~ ~- 1) = rain. (21) 

where 

/~e = ( ~ i * - -  1 ) / ( g ~  - -  1) = ~ ~r  ~O-1 , 

The value for p may  also be expressed in terms of ~, = I1X1/I2X2: 

p = (y + 1 ) / ( y - -  1). 

(21a) 

(22) 

t-  7 ..... 

I 
I 

_2._ 

1 

P~rl~) 

gO, T 

~ I 

Fig. 1. Relations p = f(k e, ?,). The region of physica l ly  possible 
values is shown by hatching.  

From the simultaneous solution of (21) and (22) we obtain k e = - y .  This means that when ), > 0k e < 0, and, con-  
versely,  when ~, < 0ke > 0. The relat ions p ; f (k  e,  )') are shown in Fig. 1. It may  be seen t h a t p  is the smal ler ,  the 
smal ler  k2. Note that p is always greater  than zero,  since the genera l ized  losses cannot be negat ive ,  while the sum of the 

mass and energy fluxes introduced into a given volume is always posi t ive.  Therefore condit ion (21) acquires the form 

ke = m ~  E[1, ~], [ - 1 ,  - ~ ] .  
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From the expression for p for an assumed trace of o, the signs of I l X l  and I~.Xa must be opposite, i . e . ,  7 < 0. 
Taking into account that p > 0, this narrows the region of possible values of k e : k e E[1, ~o]; 7 ~[--1,  --oo]. 

The region of al lowable values of k e, 7, and p is shown by hatching in Fig. 1, and corresponds to physical ly  
rea l izab le  conditions in the converter.  The condition for the op t imal  regime takes the form 

k~ = A g[/A gl, ke > 1. (23) 

For variable initial conditions k e = Ogl/Ogl = min and for 7 = g~/g2 x2 = rain, ), E [-I, -~o]. 

Hence a sufficient condition for an optimal converter regime is minimization of the ratio of increments of its 
dynamic and static conductivities. Then the necessary conditions must be met, i.e., the optimal regime is sought by 

making quasi-static changes in the parameters, while keeping g l and g] constant in each regime. Criterion (23) enables 
the optimal regime to be determined during operation by a search method, using optimizing devices, or analytically, 

using variational methods. The boundary conditions describing the lower and upper limits of variation of the thermo- 
dynamic forces are determined by the physically attainable values of X I and X2, for which the relation 

(.[1/X1) ( l l /X l )x~= 0 = [ X2 ")2 ( 2 4 )  

is satisfied; the lat ter  follows from the in i t ia l  equations (6)-(8).  Formulation of the boundary conditions according to 
(24), without loss of general i ty ,  allows one to determine the working range of Xi  and X2 on the basis of measurements 
of the external  forces and fluxes alone.  Constraints are imposed on X1 and X2 by the mater ia ls  of which the appartus 
is composed and by the processed mater ia ls .  The external  constraints: X l m  _< Xl  -< X~max, Xma -< X2 <- Xsmax and 
the working temperature range O m-%O-~.. @max establish the l imi ts  for I i ,  g l ,  I2, gz,  g l ,  gs-  The relations (2g), 
(17) -(20) and their corollaries also allow one to ca lcula te  the op t imal  regime of the converter.  This is par t icular ly  s im-  
ple for e lec t r ica l  converters (e lec t ro thermal  processes, ore-smel t ing  furnaces, e lec t ro ly t ic  processes, e t c . ) .  

The above approach, which allows for the close interdependence and superposition of various effects,  may be 
applied in pract ice  to any technologica l  process for purposes of ma thema t i ca l  description and the construction of a con-  
trol model .  The control parameters  of  the model  are the corresponding energy and mass fluxes, and the source of infor- 
m a t i o n - t h e  static and dynamic conducti ivi t ies  along one of  the channels. This also allows one to use the model  to 
construct opt imal  control systems for technological  processes. 

An example  of calculat ion of the opt imal  regime.  I We shall ca lcula te  the op t imal  regime and choose the basic 
parameters  of the e lec t ro thermal  process of smelting lead ore, using the exper imenta l  re lat ion I1 = f(Xt) (Fig.  2) and 
in i t ia l  conditions: gm ~ 1 ohm �9 m -1 (when X2 = 0) and gs0 = - 0 . 5  �9 10 "I~ kgS/sec z �9 amp �9 volt �9 m s (when X 1 = 0). 
The dimensions are: I i - a m p / m S ;  X 1 - v o l t / m ;  I 2 - k g / m  a �9 s e c - t h e  specific 
react ion rate (per  unit volume); X z - j ou l e /kg ;  g l =  g i = g 10-ohm-2.  m-1 ; 

gz = gz = g20-kgS/sec  z . a  - b �9 ma; x - j o u l e ,  m /kg  �9 volt = m �9 sec .  a m p /  IU 

kg; g* gs0 - k g Z / s e c  2 �9 amp 2 �9 m 2 The numberical  values of these 
20 ~ 

glo 2.~ 
quanti t ies given below are shown without repet i t ion of their dimensions. 

Using Fig. 2 and (21a), we determine k e min and find the point s 20 
corresponding to the opt imal  regime; we have 

kemin - -  ~8 = 2.8; XI~ = 2 .05 .  102; [ 1 8  - - -  0.39.104.  r 

Using ( 17 )  and substituting g l  and g'l corresponding to the point s 

(Fig. 2), we calcula te  x, and then Xz : xs = - 4 , 4 ,  l0  s whence Xss 
= - 0 . 9  �9 106 . Knowing Xs, we choose the opt imal  composit ion of the s tar t -  
ing raw mate r ia l  from those products for which the relat ion I1 = f (X 1) has 
been plot ted .  Here Xzs = xsX i s .  

From the formula 7 = I m X m / I 1 s X l s  we find Iss  in terms of the 
kmown quantities 7s, I i s ,  X i s ,  X26: I ~  = 0.814. Then the main  specific 
physical  and chemica l  indices of the op t imal  process have been found. 

Suppose we set ourselves a production target:  Q = 1.15 kg/sec  (100 
ton/day) ,  and, using the foregoing results, find the opt imal  volume of the 

plant:  Vs = Q / I s s ;  Vs = 3.7 m ~. 

/,2 

0.8 

0.4 

/ 

/ 
I 
| 

/.9 o~.;; ....... z t  z.3 ~', . ~  

Fig. 2. Experimental charac-  

teristics I1 = f (X 1). 

We determine the power required by the process: Ps = I l s X I s V  s ; Ps = 2.96 �9 103 kwatt .  
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We determine the opt imal  geometry of the proposed plant:  furnace height H; furnace area S; e lect rode d iameter  

d. For this we use the following equations: a) SH V; b i l  S = ~ - -  = G; where G is the furnace conduct ivi ty  determined 
X 1 H 

as a function of the e lec t rode  depth h e from the formula G = ~ for (be/H)s = 0.5 [7]; hence b) S = 3rrd/ ln(4H/d) .  
In(4H/d) H 

The relat ion between the e lect rode d iameter  and the reduced furnace d iameter  D is determined on the basis of the known 
current density in the e lectrode I l e  and in the furnace: I ~s / I le  = D2/d 2, assuming I l e  = 6" 1 0  4 for graphite e lectrodes.  
We obtain the equation c ) (D /d )~  = 8.46; where 1 ) =  ~/-4-$7r.. By simultaneous solution of a), b), and c) in the un-  

knowns H, d, and S, we determine their opt imal  values: 

H~.: :  1.'23 m; d ~ m l  m; S ~ : = 2 . 9 5  rn 2. 

Assuming, for s impl ic i ty ,  that the furnace is s ingle-phase,  we find the opt imal  e lec t r i ca l  parameters:  current I ~ 

and voltage U: 

I~ = I,~ = d - - - ~  ", I~. = 4 7 . 1 0  a amp 
4 

/e, 
The furnace phase voltage,Ue = lOe, I~; Ue --= 63 volts.  We also choose the furnace transformer.  

Industrial ore-smel t ing  furnaces have parameters  very close to those obtained.  

In an automat ic  process control system the point ~ is determined by computers and an opt imiza t ion  system, In 

this case perturbing forces deflect  the course of the process. 

NOTATION: 

g l ,  g'l - s t a t i c  and dynamic  conductivi t ies  of the converter with respect to supply of energy; g l ,  g ~ - t h e  same with 
respect to supply of mass; Xl ,  X2- sums  of the external  thermodynamic  forces determining,  respect ively,  the flux of en- 

ergy (I , )  and of mass (I2); Iq, X q - i n d i v i d u a l  energy fluxes and corresponding thermodynamic  forces; I k, X k - i n d i v i d u a !  
mass fluxes and corresponding forces; j q - t o t a l  energy flux; Z / lkJk - to ta l  mass flux; ~ k - m a s s  transfer potent ia i ;  r  

t r ica l  potential ;  J k - m a s s  flux; J s - e x t e r n a l  entropy flux; d e S / d t - r a t e  of influx of entropy from outside; d i S / d t - r a t e  of 
growth of entropy AS i inside system as a result of irreversible processes; for a real  process TdiS/dt  expresses energy dis-  
sipation per unit t ime; continuity of the process is ensured by compensat ion of losses by the influx of entropy from out-  

side ZXSe; T -  absolute temperature;  x -  coeff icient  representing ratio of total  thermodynamic  forces; g ~0, g 20 - i n i t i a l  
values of g l  and g2, respect ively,  for X2 = 0, X 1 = 0; p - specific genera l ized  loss coefficient;  k e - o p t i m a l i t y  cr i ter ion 
expressed as ratio of increments of energy conductivit ies;  } , -speci f ic  coeff icient  of energy converter; Q - o u t p u t ;  p -power ;  
S - a r e a ;  H - h e i g h t  of furnace; V - v o l u m e ;  G - t o t a l  conduct ivi ty of furnace for e lec t rode  depth he; d - e l e c t r o d e  diameter ;  

I l e - c u r r e n t  density in electrode;  D - r e d u c e d  diameter  of furnace; I ~ , U - t o t a l  furnace current and voltage~ I~ e, Xle,  

X2s, I~, U~, e t c . - c o r r e s p o n d i n g  opt imal  values of the parameters .  
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